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Summary. A Wei-Norman type of exponential ansatz is constructed for the time 
evolution operator in finite dimensional vector spaces. Based on an analysis of the 
structure of the concerned operator algebra, it is shown that a reduction principle 
exists even for simple algebras that goes beyond the Wei-Norman result when 
a specific ordering of the operators is used such that the equations of motion for 
different generators belonging to different classes are decoupled. It is shown that 
the solution in this case is global. Some specific approximation schemes are 
considered and their strengths and weaknesses are analyzed. Model calculations 
are presented to bring out these features. 
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1 Introduction 

Time-dependent approaches for describing quantum dynamical processes have 
been growing exponentially due to the computational advantages these methods 
offer compared to the time independent methods. Obtaining the information of 
a molecular process in time domain requires integrating the Schroedinger equation 
in a large Hilbert space [1]. Exact methods require large basis sets which grow 
exponentially with the size of the system and hence it is desirable to develop and 
test approximate methods. Several such methods have been discussed in literature 
[2-21]. Among the available approximate methods perturbation theory enjoys 
a pre-eminent position. 

In the convention~.l approach to the perturbation theory, the time evolution 
operator is expanded as power series in terms of the interaction hamiltonian. In 
such an expansion, the approximate evolution operator obtained by truncating the 
series is not always unitary. For developing unitary approximations to the evolu- 
tion operator the exponential ansatz is very appropriate. In this approach, the 
evolution operator UF is parameterized as: 

UF (t) = exp [A (t)]. (1.1) 
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Here A is evaluated perturbatively instead of UF. In addition, A is constrained to 
remain antihermitian at each order, thus guaranteeing an unitary evolution oper- 
ator irrespective of the order of truncation in A. A perturbation theory based on the 
above prescription is termed as the Magnus expansion [6-9]. 

Several authors discussed the validity of Magnus expansion [10-17]. The 
Magnus expansion is subject to two major limitations. First, the theory is essen- 
tially perturbative, since the governing equation for the generator A obtained from 
the Schroedinger's equation: 

lUl l@ = U[1HUF, (1.2) 

contains infinite-order polynomials in A. Consequently no non-perturbative solu- 
tion is possible in practice. Second, under certain exotic conditions, even the 
existence of the solution to that equation is questionable [7, 16]. In addition to 
these formal problems, the Magnus expansion breaks down when some of the 
unperturbed wave functions are degenerate. To avoid this, degenerate perturbation 
theories have been developed [24-28]. In these approaches a set of quasi-degener- 
ate states is defined as a model space and an effective hamiltonian is posited that 
generates the dynamics of the projection of the exact wave function in the model 
space. A wave operator is invoked to map the model space component to the exact 
wave function. Perturbation theory is now applied to the wave operator, while the 
couplings within the model space are treated exactly. It is possible to modify the 
Magnus expansion to provide such an effective hamiltonian. The resulting theory 
has an appearance very similar to canonical van Vleck perturbation theory [25]. 
However, it is also subject to the same deficiencies of the original formulation. 

In view of the above considerations it is desirable to develop alternate perturba- 
tion theories for model space effective hamiltonians based on exponential ansatze. 
Such a theory should be free from any questions regarding the existence of solution. 
In addition, the equations for the generators of such a theory should be finite-order 
polynomials, so that a non-perturbative solution is possible. The earliest attempts 
to eliminate the existence problems are due to Wei and Norman [18, 19]. These 
authors parametrized the time evolution operator in a non-canonical product of 
exponential operators. 

UF = [ I  exp (grAi~) (1.3) 
K 

The time-dependent complex functions gr are defined by a set of nonlinear 
differential equations obtained by substituting ansatz (1.3) into Eq. (1.2). The 
operators Ar are the generators of the Lie-algebra to which the hamiltonian 
belongs. Wei and Norman have shown that when the Lie-algebra to which the 
hamiltonian belongs is a solvable algebra, it is possible to choose the sequence of 
operators in Eq. (1.3) such that a global solution to U/~ can be obtained [18, 19, 21]. 
In addition, they have developed a reduction principle to disentangle the equations 
of motion of different sets of coefficients when the Lie-algebra in question is not 
simple [19, 21]. The projection operator algebra that we use is a simple algebra and 
hence cannot be subjected to their analysis. Not withstanding this, it is possible to 
parametrize the evolution operator in a product form such that a limited version of 
reduction principle is available in that the equation of motion of different groups of 
coefficients are decoupled from each other and contain finite order polynomials 
only. In addition, the existence of the solution to these equations can be proved 
rigorously. This part of the theory is presented in Sect. 2.2 in the context of 
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quasi-degenerate perturbation theory after a review of the elements of the requisite 
effective hamiltonian theory for model spaces in Sect. 2.1. We then consider three 
different methods to generate approximations to these equations in Sect. 2.3 and 
assess their relative merits. We have applied our methodology to a laser driven 
Morse oscillator with a view to understand the characteristic convergence pattern 
of these methods and the results obtained are discussed in Sect. 3. We have 
presented our conclusions in Sect. 4. 

2 Methodology 

2.1 M o d e l  space dynamics  

We assume that the state of the system whose dynamics are to be described is an 
element of a finite dimensional vector space spanned by the basis functions 
{In}, 1 <~ n ~< N}. The dynamics of a system are often confined to a small subspace 
and the states involved in this space require exact treatment while the rest of the 
states mix only weakly with the manifold of the strongly interacting states. Accord- 
ingly we partition the Hilbert space into two orthogonal subspaces: Model space 
M, consisting of the strongly interacting states characterized by the projection 
operator P and the remaining states spanning the virtual space V, (projection 
operator Q). 

We now focus our attention on a nonstationary state ~ that was constructed as 
a superposition of the model space functions alone at some initial time: 

(0) = ~ c. In), (2.1a) 
n ~ M  

and evolves in time according to the Schroedinger equation: 

i ~ = H0. (2.1b) 

Our desire is to define a model space effective hamiltonian HM such that the 
evolution of the model space component q~(t) of ~p(t) is described via an equation of 
motion of the form: 

i J? = HMO , (2.2a) 

(a(t) = P~p(t) = ~ c,(t)ln>. (2.2b) 
h E M  

With this goal in mind, we define a common wave operator [24] U for all the states 
in M. Thus: 

¢ (t) = u(t)(~(t).  (2.2c) 

From Eq. (2.1b) and (2.2c) it follows that ~b satisfies: 

iq~ =/~b,  (2.3a) 

ffI = U - 1 H U  - i U - l ( J .  (2.3b) 

Comparing Eq. (2:2a) and (2.3a) we find: 

H~t = PFIP. (2.3c) 
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The function q5 will evolve within the model space as long as: 

QHP = 0 (2.3d) 

is satisfied and the initial conditions are specified by Eq. (2.1a). Consequently, the 
governing equation for U is given by: 

Q (U- l n u  - iu-1 ~r) n = 0. (2.3e) 

Note that Eq. (2.3d) serves to define the coefficients of only such operators in 
U which induce transitions from the model space to virtual space. The coefficients 
of the rest of the operators are indeterminate, and as it turns out, irrelevant. 
Additional conditions can be imposed on/-7 to determine 0 more fully such as, for 
example: 

PflQ = 0, (2.3f) 

which then allows the. determination of coefficients of operators which induce 
transitions from the virtual space to the model space. However, as long as Eq. (2.3e) 
is exactly satisfied, these additional conditions have no influence on HM as we shall 
demonstrate in Sect. 2.3. 

In most practical calculations one is more interested in the full wave function or 
expectation values of the dynamical variables rather than the projection of the 
wave function onto the model space. The full wave function is obtained by 
operating on q~ by U. We now turn to the calculation of physically relevent 
expectation values. The expectation value of a dynamical variable O is given by: 

(0> = <~101~> = <491U+OUIdp> (2.4a) 

With ~b and U obtained from Eq. (2.2a) and (2.3e) respectively, this provides 
a straight forward procedure. An alternative procedure, more in the spirit of the 
effective operators in the model space, is the following. We define an auxiliary bra 
function (qS I by: 

(q~l = <~bl U. (2.4b) 

From the Schroedinger equation for <~ I: 

- i<q~[  = < ~ b l H ,  (2 .4c )  

we get the working equation for (q~l as: 

- i ( ~ [  = (~b[H, (2.4d) 

where / t  is defined as before. The expectation value of O is now given by: 

(O> = ( ~ l O l ~ >  = <q~lOl~b>, (2.4e) 

where 

0 = U-  ' O U. (2.4f) 

Here 0 is the model space effective operator corresponding to O in the full Hilbert 
space. This result holds irrespective of whether U is unitary or not. One noteworthy 
point here is that (4~1 is not the complex conjugate of[4~ >, but must be evolved 
independently according to Eq. (2.4d). In general, (~b I is not confined to the model 
space_However, if Eq. (2.3f) is imposed in addition to Eq. (2.3d) while determining 
U, < ~b I would also be confined to the model space. 
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2.2 Operator algebra and the evolution operator 

We now turn to the construction of the model space wave operator U. The set of 
operators that act on the vector space of functions is a complete set and is spanned 
by the basis set of the generators of the unitary group, L = { [ i ) < j [, 1 ~< i, j ~< N}. 
This operator set is closed under commutation, thus forming a Lie algebra. The 
hamiltonian, given by: 

H ---- ~ holi>fj l  (2.5) 
i , j  

is an element of this Lie algebra. Given that the hamiltonian is an element of the 
algebra, the full evolution operator Ur can be parametrized, atleast locally, as: 

Ur=expI~f~(t)[ i>' ,  • ( J [ l '  (2.6a) 

and satisfies the Schroedinger equation: 

i Uv = H/-IF. (2.6b) 

Eq. (2.6a) is the starting point for the Magnus expansion approach [-6-9]. An 
alternative form is to write U as a product of exponentials (the so called 
Wei-Norman form) rather than a single exponential [,18, 21]: 

Uv = U1UzU3"",  (2.7) 

where each U~ is an exponential operator. Wei and Norman [18] and more recently 
Wolf and Korsch [21] have discussed a reduction principle to obtain a convenient 
sequence of Ui when the algebra is semisimple. In addition, Wei and Norman have 
shown that for solvable Lie-algebras there exists a basis and an ordering of the 
basis for which the product form is global. Since the only invariant sub-algebras of 
the projection operator algebra are the null set and itself, the algebra is simple and 
hence this procedure cannot be used here. However, it turns out that a limited form 
of a reduction principle is possible in this case also due to the special structure of 
the algebra. To exhibit this structure we classify the operator set as follows: 

set of excitation operators: E = {Xv,, = Iv> <m I; v ~ V, m e M} 

set of deexcitation operators: D = {Y~v = [m> (v[; ve V, m e M }  

set of shift operators: S = {Z,,, = Ira) (n[, Wuo = [u) (v[; m,n~M; u, ve V} 

These operators satisfy the following commutation relations, 

IX, X]  = [Y, Y] = 0, (2.8a) 

[X, Y] = Z + W, (2.8b) 

I-X, Z ]  = X = IX, W], (2.8c) 

[ r ,  z ]  = y = [,Y, w ] .  (2.8d) 

Note that each of these sets defines a subalgebra of L. In addition S w E and S w D 
are also closed under commutation. We now note that (a) the excitation operators 
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in H can be eliminated by a similarity transformation generated by X alone: 
Consider the parametrization: 

UF = UXUR, (2.9a) 

Ux = exp (X). (2.9b) 

The equation of motion for UR is given by: 

i (JR = HR UR, (2.9C) 

HR = U x  1 HUx - i Ux 1 (Jx. (2.9d) 

In other words, UR is generated by the effective hamiltonian operator HR. It is 
possible to eliminate all X operators in HR by requiring: 

Q (Ux i HUx - i U~ 1 t)x) P = 0, (2.9e) 

which provides the working equation for (Jx. (b) If the effective hamiltonian 
operator HR does not contain X operators then UR can be parametrized as: 

UR = exp [ Y + Z + W], (2.9f) 

since S t3 D is a Lie algebra and HR belongs to it. Combining these two statements, 
and invoking similar arguments with respect to the deexcitation operators, we 
arrive at: 

Ur = exp (X)exp (Y )exp (Z  + W). (2.10) 

Thus the model space wave operator U is given by: 

U = exp (X) exp (Y), (2.11) 

since the effect of Z can be absorbed into q~ and W acting on the model space gives 
zero. The generators X and Y satisfy: 

if( = Q exp( - x )  H exp (X) P, (2.12a) 

i I?= Pexp(  - Y) [ e x p ( -  X ) H e x p ( X )  - iX]exp (Y )  Q. (2.t2b) 

These equations are decoupled since X does not depend upon Y. In this sense we 
have obtained a reduction of the operator set. Let us note that any other ordering 
of operators (e.g. exp (Z)exp (X)exp (Y)exp (W)) does not lead to decoupled sets of 
equations. 

2.3 Perturbation theory 

We now turn to the explicit solution of Eq. (2.12). From Eq. (2.12a) we obtain by 
Hausdorff expansion: 

i f(  = Q(H + [H, X ]  + 1/2! [[H, X],  X])  P, 

= H o p  + H ( 2 Q X  - X H p p  - XHpoX. (2.13a) 

This equation is a matrix Ricatti equation and is the result of a multistate 
generalization of the nonlinear quotient approach discussed by Dion and 
Hirschfelder [29]. The existence theorem proved in that context (theorem 9 of 
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Ref. 1-29]) holds here also. Since X is a v x m matrix operator where v and m are 
the dimensions of the V and M respectively, parametrizing X formally as: 

X = F G -  1, (2.13b) 

where F is a v x m matrix and G is a m × m matrix and substituting it into Eq. (2.13a) 
we obtain: 

iI~G -~ - iFG-1GG -~ = HQp -b HQQFG -1 - FG-1Hvp - FG-1HpQFG -~. 

(2.13c) 

This equation can now be decoupled into two sets by writing: 

iG = HveG + HeQF, (2.13d) 

iF = HQpG + HQeF. (2.13e) 

Note that Eqs. (2.13d, 2.13e) recover the original Schroedinger equation. Since the 
solution to this always exists, X also has a solution. The initial condition: 

X (0) = 0 (2.13f) 

is satisfied by requiring: 

F(0) = 0, (2.13g) 

G(0) = 1 (2.13h) 

without loss of generality. In a similar fashion, it can be shown that Eq. (2.12b) for 
Y also has a global solution. 

Since the multicommutator expansion in Eq. (2.13a) is finite, a nonperturbative 
solution for X is possible in contrast to Magnus expansion. In addition, a perturb- 
ative expansion for X by this approach has far fewer terms at any order compared 
to its counterpart by Magnus expansion. 

Expanding X perturbatively we obtain: 

X = ~ 2 " X , ,  (2.14a) 
n 

n - 2  

i X ,  = HQp6,1 + HQQX,_I - X ,_ lHpp  - ~ X r H p Q X , _ , _ I ,  (2.14b) 
r = l  

where n is the order of perturbation. The model space effective hamiltonian 
(Eq. (2.2b)) becomes: 

HM = Hpe + H p o X  - Y(Hep + H Q e X  -- XHpp -- X H v e X  - iX) .  (2.15a) 

If X satisfies Eq. (2,13a) exactly, this reduces to: 

HM = Hvp + HvoX .  (2.15b) 

This is expected since the action of Y on the model space gives zero. Consequently 
these operators should have no influence on the model space dynamics. Thus 
a simple minded perturbation theory consists of two steps: (1) solve Eq. (2.14b) to 
some finite order. (2) Construct HM according to Eq. (2.15b) and integrate Eq. (2.2a) 
for ~b. We shall refer to this approach as the similarity transformation based 
perturbation theory (STP), since in effect, it postulates U = exp (X). 
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One possible problem with STP is that, in the strong coupling regime the 
perturbative dynamics may not conserve the norm of the wave function. This is the 
well-known problem of intruder states [24]. When Eq. (2.3d) is satisfied, these 
states have no influence on the model space dynamics because, any vector from the 
model space would evolve within the model space as long as HQp = 0. If X is 
obtained from perturbation theory, Eq. (2.3d) is violated. In such a case, invocation 
of Eq. (2.15b) is equivalent to replacing n in Eq. (2.3b) with Ha such that: 

Ha = ffl - R, (2.16a) 

where 

Q R P  = QHP. (2.16b) 

The hamiltonian corresponding to HA in the full Hilbert space is 

ffI = H - U R U  -1 (2.17) 

If the H operator is non-hermitian, it could, in the course of its evolution, 
develop complex eigenvalues. The eigenvectors associated with these eigenvalues 
are the intruder states. When the intruder states develop a large component in the 
model space at some stage, the model space states would grow exponentially. Such 
a situation can be expected when the states in the model space interact strongly 
with the virtual space. 

There are two ways to eliminate the influence of the intruder states. The first 
approach is to expand the model space to incorporate all the strongly interacting 
states as advocated by Jolicard and Grosjean [24]. This forms the basis of the 
intermediate hamiltonian approach discussed in the context of the usage of incom- 
plete model spaces along with the coupled cluster method for stationary states 
[28]. A second approach is to ensure that H is hermitian through out the course of 
the evolution. Note that only the QP block of the R operator isspecified by 
Eq. (2.16b). It is possible to use this flexibility to ensure a hermitian H. Essentially 
H is hermitian if/~ = U R U - ~  is hermitian. Thus, in terms of the sub-blocks of the 
R operator the following equations must be satisfied to guarantee the hermiti- 
city of H. 

R e o  = Roe  + X R v e  = / ~ a ,  (2.18a) 

Ree = Rvv -- Rvv X = R~v, (2.18b) 

= = -+ (2.18c) Rye  Rye  ROe. 

Since Ree,  Rye  and Rqq are not defined by Eq. (2.16b) additional conditions can 
be imposed. For example setting: 

Rye  = Rye  = Rvv = 0, (2.19) 

we arrive at: 

/~vv = 0, (2.20a) 

Roe = (Rev - RQQ X) = 0. (2.20b) 

Thus choosing an ReQ such that Ree = R~e and requiring Rev  = R e e  X would 
guarantee that H is hermitian. In such a case X must satisfy: 

i-~ = Hey  + (Hee -- R Q e ) X  -- XHvv  -- X H v e X .  (2.21) 
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In this case X cannot be obtained as a power series. Instead approximations to 
X are obtained by defining different RQQ matrices. We term approaches based on 
Eq. (2.21) as the hermitised similarity transformation-based theories (HST). 

An alternative approach to avoid norm violations is to insist that the full 
evolution operator of Eq. (2.10) underlying the model space evolution operator to 
be unitary. It can be shown by direct substitution that [Iv is unitary if Y, Z and 
W satisfy the following equations: 

Y = - (1 + X+X)  -~ X +, (2.22a) 

Z = - 1/21n(1 + X+X) ,  (2.22b) 

W =  - 1/21n(1 + XY).  (2.22c) 

Thus, usage of Eq. (2.15a) with Eq. (2.22a) for Y ensures that there is no norm 
violation. This approach will be called as the unitary transformation based per- 
turbation theory (UTP) in the following. 

In the next section we study the numerical performances of these three methods. 

3 Model applications 

To examine the relative performances of the three approaches described in the 
previous section and also to gain an understanding of their convergence properties 
we have used the three approaches to follow the dynamics of a harmonically driven 
Morse oscillator. The hamiltonian of the system is given by: 

H = H o +  V (3.1) 

Ho = p2/2m + D(1 - e-'X) 2 (3.2a) 

V = Aox cos (~0t) (3.2b) 

The parameters D, ~, and m were chosen to correspond to that of HF molecule 
[22]. Ao was chosen such that the intensity of the external field was in the range of 
1 to 2 TW/cm 2 [23]. 

In all the calculations presented below the frequency of the radiation field was 
set to be in 1:1 resonance between ground and the first excited states. Conse- 
quently, these two states are degenerate and interact strongly, while the coupling to 
the rest of the states is taken to be weak enough to be subjected to a perturbative 
treatment. Thus all the perturbative calculations were carried out in the interaction 
picture with a model space spanning the ground and first excited states and the 
lowest ten eigenstates of the Morse oscillator were used to define the complete 
vector space. 

In Fig. 1 we plot the expectation value of the unperturbed hamiltonian of the 
Morse oscillator calculated by STP as a function of time when the intensity of the 
driving field is 2 TW/cm 2. Upto about 15 optical cycles (o.c.) the perturbation 
theory provides an improvement over the zeroth order description with the 
accuracy of the perturbation solution improving with increasing order. Beyond 
that the energy calculated by all the orders blows up indicating the divergent 
nature of the perturbation series. This conclusion is reinforced by Fig. 2 in which 
norm of the perturbed wave function defined by: 

U = <q5 l exp (X +) exp (X)I ~b) ~/2 (3.3) 
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Fig. 1. Energy of the Morse oscillator as 
a function of time with the field intensity 
I = 2.0 TW/cm 2 by STP. Continuous line with 
circles: Converged basis set calculation. Dash 
and double dotted line: Basis set restricted to two 
functions. Dash and dotted line: First order. 
Dashed line: third order. Continuous line: Fifth 
order 
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Fig. 2. Norm of the perturbed wave function at 
I = 2 TW/cm z. Figure conventions are the same 
as before 

is plotted as a function of time. It appears from this and other unpublished data 
that the higher the order of the perturbation theory the later is the occurrence of 
the norm violation. But once the norm violation begins it appears to grow faster in 
higher order approximations. 

In Fig. 3 we present a similar calculation to Fig. 1 but based on HST in which 
we have set R e e  = HQQ. This is equivalent to solving the equation: 

i X  = Hap  - X H p e  - X H e Q X  (3.4) 

for X. This is a nonperturbative approximation and as may be expected performs 
quite satisfactorily. 

In Fig. 4 the energy expectation value calculated by the UTP  approximations is 
plotted as a function of time at the same intensity as Fig. 1. In the early phase of the 
time development (upto about 20 o.c.) the approximation based on the unitary 
transformation is far worse than the corresponding STP version. However, since 
there is no norm violation in this approach its validity improves at longer times 
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Fig. 3. Energy of the Morse oscillator as 
a function of time by HST. Continuous line: 
Converged basis set calculation. Dash a n d  
double dotted line: Basis set restricted to two 
basis functions. Dash and dotted line: HST 
calculation 
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Fig. 4. Energy of the Morse oscillator as 
a function of time with the field intensity 
I = 2.0 TW/cm 2 by UTP.  Figure conventions 
are the same as in Fig. 1 

when the approximations based on the STP breakdown due to norm violations. 
However these approximations seem to be worse than the hermitised version. 

Comparing the energy expectation values obtained from STP and UTP  ap- 
proaches (Figs. 1 and 4), it appears that the result of STP version is close to exact 
result upto about 20 o.c. Beyond that it diverges. The UTP  version underestimates 
'the energy atleast in the initial phase. The explanation for this can be given as 
follows: Substituting for Y in Eq. (2.15a) results in the equation: 

HM = (1 + X+X) -1 (H,, + Hpr2X + X+HQp + X+Ho.eX - iX+X) (3.5) 

It can be seen from this equation that when a particular X value turns out to be 
large, the corresponding value of the factor (1 + X+X) - 1 will be very small, 
consequently the matrix elements in the corresponding row of H~t become negli- 
gible. This means, the model space state which is strongly interacting with the 
virtual space is being eliminated from the model space for all practical purposes. In 
effect then the model space is reduced to one function and the wave packet is 
unable to gain energy. 
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4 Concluding remarks 

Degenerate perturbation theory is a convenient tool for the description of dynam- 
ical systems with a large number of strongly interacting states. Any approach to 
such a perturbation theory defines a common wave operator for all the states in the 
model space [24-28]. In this work we have studied the development of three such 
approaches based on exponential ansatze. We have opted for Wei-Norman type of 
product form for the time evolution operator rather than a single exponential type 
normally invoked in the Magnus expansion. Based on the structural properties of 
the Lie algebra under consideration we have shown that the evolution operator is 
partially reducible in the sense that the computation of the time dependent 
coefficients associated with the excitation operators is decoupled from the compu- 
tation of the rest of the operators. More generally, if the algebra L underlying the 
dynamics can be decomposed into a sequence of subalgebras LK such that: 

L =  L o  ~ _ L ~  ~ L  2 ~ ' ' ' ,  (4.1) 

then, parametrization of U as: 

U = exp (Xo) exp (X1) exp (Xz) • • • ; X K  ~ L K  --  L x -  1 (4.2) 

leads to decoupling of the equations of motion for different Xr. A perturbation 
theory based on such decouplings has the advantage that it requires less computa- 
tional effort than the Magnus expansion. First, the equations for different gener- 
ators are decoupled, and consequently the original problem is broken down into 
several subproblems which can be solved sequentially. Second, since the equations 
for the generators contain finite order polynomials, the number of terms at each 
order of perturbation theory are fewer than in the corresponding Magnus expan- 
sion. Lastly, the resulting equations provide a global solution to the wave operator. 
We note in passing that algebraic methods have been used in the past to provide 
approximate solutions to the Schroedinger equation [4, 5]. In all these approaches 
the hamiltonian is not in general an element of the algebra used. Consequently, the 
algebraic approach does not provide the complete solution. Instead it is used to 
construct a convenient time-dependent coordinate system in which a basis set is 
defined to carry out the dynamical calculations. The most commonly used algebras 
in this context are the harmonic oscillator algebra and its multidimensional 
extensions. Because of the nonlinearities in the equations of motion for the 
generators, these approaches are also subject to the question of the existence of the 
solution depending on the order of the operators used. However, the harmonic 
oscillator algebra is a semisimple algebra and can be treated on the lines discussed 
by Wolfe and Korsch 1-21]. A particularly well-developed approximation method 
based on this approach is the time-dependent Rotated Hartree method discussed 
by Kucar et al. [5], who also prove the existence of a global solution when 
a particular ordering of the operators is chosen. However, all these approaches 
differ from ours because we work with the algebra that contains the hamiltonian. 
The work of Mukherjee [28] is closest in spirit to ours, in that he uses an 
exponential ansatz for the full evolution operator which he then factorises into the 
model space wave operator and the closed part containing the norm and the phase 
corrections. However, his ansatz is motivated by the requirements of the asymp- 
totic separability. In our case the factorisation of the excitation and shift operators 
(open and closed operators in the terminology of Mukherjee) is a consequence of 
the structure present in the algebra. 
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While the decoupling of  equat ions of  mot ion  provide significant formal advant-  
ages as discussed above, in an approximate  calculation they could lead to norm 
violations because the effective hamil tonian underlying specific approximat ions  in 
the full Hilbert space could become nonhermitian.  Analysing the source of  such 
nonhermit ici ty  we found criteria by which an approximat ion  could be tested 
a priori as to whether it would lead to n o r m  violation or  not. Alternatively, the 
model  space wave opera tor  could also be designed such that the full evolution 
opera tor  f rom which it is generated is unitary. 

We have studied the performances of  these three methods  in a model  system. It  
appears f rom these studies that  the per turbat ion theory based on similarity trans- 
format ion seems to be adequate  atleast for weak coupling or  short  time dynamics  
while at longer times the norm violation effects seem to be predominant .  We have 
also tested a nonpreturbat ive  approximat ion  which was guaranteed to conserve the 
norm. The performance of this approximat ion  was quite good. Approximat ions  
based on unitary t ransformat ion do not  suffer f rom norm violation; however, this 
seems to be achieved at the cost of practically eliminating some of  the states from 
the model  space. Its performance is in general worse than an unconstrained 
similarity t ransformation based approach.  These conclusions are, of  course, tenta- 
tive and would have to be backed up by more  extensive studies on these 
approaches.  
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